## MARK SCHEME for the October/November 2009 question paper

### for the guidance of teachers

# **5070 CHEMISTRY**

5070/02

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.



UNIVERSITY of CAMBRIDGE International Examinations

|    | Page 2 |                          |                                            | Mark Scheme: Teachers' version                                                                                                                        | Syllabus                        | Paper                                |
|----|--------|--------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------|
|    |        |                          |                                            | GCE O LEVEL – October/November 2009                                                                                                                   | 5070                            | 02                                   |
| A1 | (a)    | (i)                      | ethe                                       | ne                                                                                                                                                    |                                 | [1]                                  |
|    |        | (11)                     | sodi                                       | um iodide                                                                                                                                             |                                 | [1]                                  |
|    |        | (iii)                    | amm                                        | nonium sulfate                                                                                                                                        |                                 | [1]                                  |
|    |        | (iv)                     | nitro                                      | gen(IV) oxide                                                                                                                                         |                                 | [1]                                  |
|    |        | (v)                      | calci                                      | um oxide                                                                                                                                              |                                 | [1]                                  |
|    |        | (vi)                     | calci                                      | um oxide                                                                                                                                              |                                 | [1]                                  |
|    | (b)    | sub<br>RE                | stanc<br>JECT                              | e containing two (or more) elements / different atoms<br>: references to a mixture                                                                    | combined/ bond                  | ed / joined [1]                      |
|    | (c)    | ions<br>IGN<br>NO        | <u>s</u> cani<br>IORE<br>T: str            | not move / in fixed position in solid / in lattice;<br>: charged particles<br>ong electrostatic forces between ions                                   |                                 | [1]                                  |
|    |        | ions<br>NO<br>RE         | s can<br>T: ion<br>JECT                    | move in solution / are mobile in solution<br>s free<br>: reference to electrons                                                                       |                                 | [1]                                  |
|    |        |                          |                                            |                                                                                                                                                       |                                 | [Total: 9]                           |
| A2 | (a)    | C₀⊦<br>ALL<br>IGN<br>IGN | I <sub>12</sub> O6<br>_OW:<br>IORE<br>IORE | $\rightarrow 2C_2H_5OH + 2CO_2$<br>$C_2H_6O$ for ethanol<br>: word equation<br>: state symbols                                                        |                                 | [1]                                  |
|    | (b)    | ferr<br>RE               | nenta<br>JECT                              | tion<br>: fermentation + respiration                                                                                                                  |                                 | [1]                                  |
|    | (c)    | spe<br>incr<br>incr      | ed ir<br>ease<br>ease                      | ncreases from 20°C / (at lower temperatures) spe<br>s then decreases / at high(er) temperatures speed<br>) / slower OR stops at high(er) temperatures | ed increases a<br>decreases (as | s temperature<br>temperatures<br>[2] |
|    | (d)    | initi<br>finis           | al gra<br>shes a                           | idient greater <u>and</u> starts at 0,0;<br>at <u>same</u> final volume                                                                               |                                 | [1]<br>[1]                           |
|    |        |                          |                                            |                                                                                                                                                       |                                 | [Total: 6]                           |
| A3 | (a)    | nitro                    | ogen                                       | 79% <u>and</u> oxygen 20%                                                                                                                             |                                 | [1]                                  |
|    | (b)    | (i)                      | aton<br>num<br>NOT                         | ns of same element / same proton number / same<br>bers of neutrons / nucleons / mass number<br>: atoms with different numbers of neutrons             | atomic number                   | <sup>·</sup> with different<br>[1]   |
|    |        | (ii)                     | 18 e                                       | lectrons and 22 neutrons                                                                                                                              |                                 | [1]                                  |

| Page 3 |     |                               |                                                            | Mark Scheme: Teachers' version                                                                                                                                                                                                                                                                                                                              | Syllabus          | Paper      |
|--------|-----|-------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------|
|        |     |                               |                                                            | GCE O LEVEL – October/November 2009                                                                                                                                                                                                                                                                                                                         | 5070              | 02         |
|        | (c) | (i)                           | TiC <i>l</i><br>IGN<br>IGN                                 | ₄ + 4Na → Ti + 4NaC <i>l</i><br>ORE: word equation<br>ORE: state symbols                                                                                                                                                                                                                                                                                    |                   | [1]        |
|        |     | (ii)                          | to pr<br>ALL(<br>NOT                                       | revent the sodium oxidising/ to prevent oxygen reacting<br>OW: air in place of oxygen<br>-: argon is unreactive                                                                                                                                                                                                                                             | g with the sodium | າ [1]      |
|        | (d) | divio<br>Xe =<br>Xe =<br>corr | de by<br>= 9.82<br>= 0.01<br>ect ra                        | correct relative atomic mass;<br>25/131; $O = 1.2/16$ ; $F = 5.7/19$<br>75; $O = 0.075$ ; $F = 0.3$<br>atio from this division;                                                                                                                                                                                                                             |                   | [1]        |
|        |     | Xe =                          | = 1; (                                                     | O = 1; $F = 4$                                                                                                                                                                                                                                                                                                                                              |                   | [1]        |
|        |     | corr                          | ect fo                                                     | ormula XeOF₄ (any order)                                                                                                                                                                                                                                                                                                                                    |                   | [1]        |
|        |     |                               |                                                            |                                                                                                                                                                                                                                                                                                                                                             |                   | [Total: 8] |
|        |     |                               |                                                            |                                                                                                                                                                                                                                                                                                                                                             |                   |            |
| A4     | (a) | (rea<br>hydi<br>ALL<br>NO     | cts w<br>roger<br>OW:<br>T: rea                            | vith water to) produce hydroxide <u>ions</u> / proton acceptor<br>n ion acceptor<br>hydroxide ions produced<br>acts with water unqualified / it is an alkali / pH more tha                                                                                                                                                                                  | ın 7              | [1]        |
|        | (b) | (gre<br>NO⊺                   | y)- <u>ar</u><br>Γ: gre                                    | <u>een precipitate</u><br>ey precipitate / blue-green precipitate / yellow green pp                                                                                                                                                                                                                                                                         | t                 | [1]        |
|        | (c) | mole<br>IGN                   | es mo<br>ORE                                               | ethylamine = 6.2/31 = 0.2;<br>:: units                                                                                                                                                                                                                                                                                                                      |                   | [1]        |
|        |     | volu<br>ALL<br>ACC<br>NO      | ime c<br>OW:<br>CEPT<br>T: 4.8                             | of methylamine = 0.2 × 24 = 4.8 dm <sup>3</sup><br>ecf<br>: 4.8 alone<br>3 cm <sup>3</sup>                                                                                                                                                                                                                                                                  |                   | [1]        |
|        |     |                               |                                                            |                                                                                                                                                                                                                                                                                                                                                             |                   |            |
|        | (d) | (i)                           | subs<br>ALL(                                               | stance which speeds up a reaction<br>OW: substance which changes the speed / rate of read                                                                                                                                                                                                                                                                   | ction             | [1]        |
|        |     | (ii)                          | 32 (g<br>240<br>ALL0<br>NOT<br>ALL0<br>7500<br>ALL0<br>NOT | g) of methanol $\rightarrow$ 31 (g) methylamine;<br>kg methanol $\rightarrow$ 232.5 kg / 232 500 g methylamine;<br>OW: 232.5 / 233<br>: 232.5 g<br>OW: ecf from wrong molar masses<br><b>sing moles</b><br>kg methanol = 240 000 / 32 = 7500 mol;<br>0 mol methanol $\rightarrow$ 7500 × 31 = 232.5 kg / 232 500 g;<br>OW: 232.5<br>: 232.5 g<br>: 240 (kg) |                   | [1]<br>[1] |

|    | Page 4 |                                                                                            | Mark Scheme: Teachers' version                                                                                                                                                                                                                                                                                       | Syllabus                                                                                | Paper                                                              |
|----|--------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|    |        |                                                                                            | GCE O LEVEL – October/November 2009                                                                                                                                                                                                                                                                                  | 5070                                                                                    | 02                                                                 |
| A5 | (a)    | 2KBr + 0<br>Allow:<br>Ignore<br>Ignore                                                     | $Cl_2 \rightarrow 2KCl + Br_2$<br>ionic equation / multiples<br>:: word equation<br>:: state symbols                                                                                                                                                                                                                 |                                                                                         | [1]                                                                |
|    | (b)    | (acidified                                                                                 | l) potassium dichromate;<br>(acidified) potassium manganate(VII) / potassium por                                                                                                                                                                                                                                     | manganato                                                                               | [1]                                                                |
|    |        | ALLOW:<br>turns gre<br>ALLOW:<br>IGNORE                                                    | (acidined) potassium manganate(vn) / potassium per<br>en;<br>(for permanganate) turns colourless / decolourises<br>:: starting colour                                                                                                                                                                                | manganate                                                                               | [1]                                                                |
|    | (c)    | density:<br>boiling p                                                                      | ALLOW 2 to 4 (actual is 3.12);<br>oint: ALLOW 20 –120 (actual is 59)                                                                                                                                                                                                                                                 |                                                                                         | [1]<br>[1]                                                         |
|    | (d)    | explanat<br>bromine<br>broken;<br>ALLOW:                                                   | ion of evaporation e.g. <u>particles</u> (or <u>molecules</u> ) with a particles break free from each other / forces or bond <u>particles</u> (or <u>molecules</u> ) of bromine escape from liquid                                                                                                                   | lot of energy lea<br>s between brom                                                     | ave the liquid /<br>nine molecules<br>[1]                          |
|    |        | diffusion<br>REJECT<br>explanat<br>e.g. rand<br>collisions<br>bromine<br>IGNORE<br>move to | / diffuse;<br>: Brownian motion<br>ion of diffusion involving qualified movement of <u>molecu</u><br>dom movement of molecules / molecules move anyw<br>s / particles disperse / particles travel throughout the<br>particles;<br>:: molecules move from area of high concentration to<br>the other side of the room | <u>ules</u> / <u>particles</u><br>here / molecule<br>room / constant<br>o low concentra | [1]<br>s in (constant)<br>motion of the<br>[1]<br>tion / particles |
|    |        |                                                                                            |                                                                                                                                                                                                                                                                                                                      |                                                                                         | [Total: 8]                                                         |
| A6 | (a)    | it / ozone<br>ALLOW:<br>ALLOW:<br>ravs                                                     | e absorbs OR traps <u>ultra violet</u> radiation / it absorbs ult<br>uv for ultraviolet<br>protects against uv rays / prevents uv rays getting t                                                                                                                                                                     | raviolet light;<br>o (Earth's) surfa                                                    | [1]<br>ce / blocks uv                                              |
|    |        | (too muc<br>ALLOW:                                                                         | h) ultra violet radiation can cause skin cancer / catara<br>uv is harmful to skin / causes skin burns                                                                                                                                                                                                                | cts;                                                                                    | [1]                                                                |
|    | (b)    | 203 →<br>Ignore<br>Ignore                                                                  | 3O <sub>2</sub><br>: state symbols<br>: word equation                                                                                                                                                                                                                                                                |                                                                                         | [1]                                                                |
|    | (c)    | (i) rose<br>ALL<br>ALL<br>ALL                                                              | from early 1980's to 1988 / just before 1990;<br>OW: rose to 1987 OR1989 / rose to just before 1990<br>OW: there was an increase in CFCs in the 1980's<br>OW: rose to a peak in 1988                                                                                                                                 |                                                                                         | [1]                                                                |
|    |        | then<br>1980                                                                               | declined / lowers OR decreases after 1987 or 1988<br>O's                                                                                                                                                                                                                                                             | or 1989 / from                                                                          | the end of the<br>[1]                                              |

| Page 5 | Mark Scheme: Teachers' version      | Syllabus | Paper |
|--------|-------------------------------------|----------|-------|
|        | GCE O LEVEL – October/November 2009 | 5070     | 02    |

(ii) Any 2 sensible suggestions which include relevant dates e.g.

- relates drop in amount of ozone between 1980 and 1988 to increase in CFC production:
- level of ozone from 1998 to 2002 has slightly increased when CFC production had remained low or decreased
- CFC production dropped significantly from 1988 to 1998 but so did the amount of ozone:
- level of ozone from 1998 to 2006 has been very variable and no definite correlation with decrease CFC production [2]

[Total: 7]

#### B7 (a) ANY 4 of:

- power source / battery connected to electrodes dipping in electrolyte; ALLOW: from diagram REJECT: wrong electrolyte / carbon electrodes
- anode impure copper and cathode pure copper;
- cathode increases in size / mass and anode decreases in size / mass; ALLOW: copper deposits on cathode and removed from anode
- cathode reaction:  $Cu^{2+} + 2e^{-} \rightarrow Cu$ ; ALLOW: e for electron / -2e on right
- anode reaction:  $Cu \rightarrow Cu^{2+} + 2e^{-}$ [4] ALLOW: e for electron / -2e on left

NOTE: both equations correct but anode reaction and cathode reaction the wrong way round gains 1 mark only

- **(b)** (i)  $4OH^- \rightarrow 2H_2O + O_2 + 4e^-$ ALLOW:  $4OH^- - 4e^- \rightarrow 2H_2O + O_2$ ALLOW: multiples
  - (ii) copper ions in solution not replaced / reduction in amount of copper ions available; [1] NOT: anode is not copper NOT: because the copper is being used up NOT: because copper ions are reduced to copper at the cathode
- (c) (i) 1 mark for each catalyst with its correct product: e.g. iron for making ammonia / ALLOW: iron oxide nickel for making margarine / hydrogenation of alkenes / making alkanes vanadium(V) oxide for making sulfur trioxide / sulfuric acid [2] ALLOW: vanadium oxide NOT: wrong oxidation state ALLOW: platinum for SO<sub>3</sub> / sulfuric acid / nitric acid NOT: for Haber process / for Contact process
  - (ii) any two properties of transition metals other than catalyst e.g. variable oxidation number OR variable oxidation state OR form more than one sort of ion / variable valency form coloured compounds or coloured ions form complex ions ALLOW: high density ALLOW: high melting or high boiling points [2]

[1]

|    | Page 6 |                                                                                | Mark Scheme: Teachers' version                                                                                                                                                                                                                     | Syllabus           | Paper                   |
|----|--------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------|
|    | (c)    |                                                                                | GUE O LEVEL - October/November 2009                                                                                                                                                                                                                | 5070               | U2                      |
| BQ | (a)    | decoloris<br>REJECT                                                            | red / brown colour of bromine;<br>sed / goes colourless (when fumaric acid added);<br>: becomes discoloured                                                                                                                                        |                    | [1]<br>[1]              |
|    |        | (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub><br>(HO <sub>2</sub> CH<br>ALLOW: | + $Br_2 \rightarrow$ ) $C_4H_4O_4 Br_2 /$<br>= $CHCO_2H + Br_2 \rightarrow$ ) – $CHBr$ —— $CHBr$ –<br>from altered diagram                                                                                                                         |                    | [1]                     |
|    | (b)    | moles so<br>moles fu<br>ALLOW:                                                 | odium hydroxide = 0.018 × 0.2 = 3.6 × 10 <sup>-3</sup> ;<br>maric acid = ½ answer to first mark;<br>ecf                                                                                                                                            |                    | [1]<br>[1]              |
|    |        | concentr<br>[(1000/60<br>ALLOW:<br><b>OR</b>                                   | ation of fumaric acid = $(1000/60 \times \text{answer to second m}) \times 1.8 \times 10^{-3}] = 0.03 \text{ mol/ } \text{dm}^3$<br>ecf                                                                                                            | nark)              | [1]                     |
|    |        | $\frac{C_1V_1}{C_2V_2} = -$                                                    | $\frac{0.2 \times 18}{C_2 \times 60}$ (1 mark for working as shown)                                                                                                                                                                                |                    |                         |
|    |        | $\frac{C_1V_1}{C_2V_2} = -$                                                    | $\frac{n_1}{n_2} = \frac{0.2 \times 18}{C_2 \times 60} = \frac{2}{1}$ (2 marks for working as shown)                                                                                                                                               |                    |                         |
|    |        | Correct a                                                                      | answer = 3rd mark                                                                                                                                                                                                                                  |                    |                         |
|    | (c)    | polyeste                                                                       | r                                                                                                                                                                                                                                                  |                    | [1]                     |
|    | (d)    | clothing<br>balloons<br>ALLOW:<br>IGNORE                                       | / ropes / fishing lines / fishing nets / stockings / para<br>/ guitar strings / racquet strings / petrol tanks<br>fabrics<br>:: fibres without qualification                                                                                       | chutes / toothbr   | ush (bristles) /<br>[1] |
|    | (e)    | Any two<br>• <u>burn</u><br>NOT<br>• fills •<br>• litter                       | environmental problems e.g.<br><u>ing</u> causes poisonous or harmful fumes / acidic fumes<br>: references to carbon dioxide / soot / pollution<br>up landfill sites / not enough landfill sites / difficulty to s<br>/ just thrown away / eyesore | tore waste         |                         |
|    |        | <ul><li>trap</li><li>bloc</li></ul>                                            | animals or birds / harms organisms in sea ALLOW: ha<br>ks drains OR streams                                                                                                                                                                        | arms or kills wild | life<br>[2]             |

[Total: 10]

| Page 7 | Mark Scheme: Teachers' version      | Syllabus | Paper |
|--------|-------------------------------------|----------|-------|
|        | GCE O LEVEL – October/November 2009 | 5070     | 02    |

#### B9 (a) Any two of:

- carbon dioxide + water (combine);
- to form glucose + oxygen;
- in presence of chlorophyll / sunlight

ALLOW: information from word equation or symbol equation with correct formulae

- (c) (i)  $C_8H_{18} + 12\frac{1}{2}O_2 \rightarrow 8CO_2 + 9H_2O$  (or multiple of this)
  - (ii) <u>carbon dioxide</u> (produced) is a greenhouse gas / <u>carbon dioxide</u> is responsible for global warming
    ALLOW: increased <u>carbon dioxide</u> levels lead to stated effect of climate change e.g. melting of polar ice / glaciers / desertification / rise in sea levels etc [1]
    REJECT: statements about linking global warming / carbon dioxide to ozone layer
- (d) (i) amount of bicarbonate decreases / more carbonate forms; [1] ALLOW: more water forms / more carbon dioxide forms ALLOW: concentration of bicarbonate decreases / concentration of carbonate / water / carbon dioxide increases position of equilibrium moves to the left / reaction moves in the in direction of decreasing concentration / when conditions in equilibrium changed the equilibrium shifts to oppose the change OWTTE ; [1]
  - (ii) any Group I carbonate / ammonium carbonate [1] ACCEPT: hydrogencarbonates / correct formulae

#### (e) Any 2 of:

- sulfur dioxide in flue gases from burning of fossil fuels / named fossil fuel; NOT: removes sulfur dioxide from atmosphere
- sulphur dioxide reacts with calcium carbonate
- to form calcium sulfite (+ carbon dioxide);
- calcium sulfite reacts (with oxygen and water) to form calcium sulfate;
- removal of sulfur dioxide fuels reduces acid rain / reduces sulfur dioxide in atmosphere / sulfur dioxide causes acid rain
- removal of sulfur dioxide reduces <u>named effect</u> of acid rain / sulfur dioxide causes e.g. respiratory difficulties / acidification of lakes / erodes buildings or bridges / kills trees / kills animals or plant in rivers or ponds [2]
  NOT: kills plants or animals in seas / kills marine life

[Total: 10]

[2]

[1]

| Page 8          | Mark Scheme: Teachers' version      | Syllabus | Paper |
|-----------------|-------------------------------------|----------|-------|
|                 | GCE O LEVEL – October/November 2009 | 5070     | 02    |
|                 |                                     |          |       |
| B10(a) haematit | e / limonite / magnetite / siderite |          | [1]   |

- (b) Any 3 of:
  - calcium carbonate / limestone decomposes to calcium oxide;
  - calcium oxide reacts with silica / silicon dioxide / sand (in the ore);
  - calcium oxide is basic so reacts with acidic impurities;
  - to form a slag / calcium silicate (this mark consequential on either of the two above);
  - silicates / impurities would clog up the blast furnace if not removed [3]
- (c) energy needed to break the bonds (in carbon and oxygen) / bond breaking is endothermic; [1] energy released on forming bonds in CO<sub>2</sub> / bond forming is exothermic; [1] more energy involved in bond making than bond breaking / more energy released than absorbed [1]
- (d)  $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$  [1]  $Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$  [1] IGNORE: state symbols IGNORE: word equation
- (e) remove (some) carbon / blow oxygen through (the molten iron) / react it with oxygen / use a basic oxygen converter [1]
  NOT: use a furnace / use a converter
  NOT: adding other metals to form stainless steel / alloys

[Total: 10]